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ECS 20 – Fall 2021 – P. Rogaway      Asymptotic Growth Rates  
 
 
 
Comparing growth-rates of functions – Asymptotic notation and 
view 
 
Motivate the notation.   Will do big-O  and Theta. 
http://en.wikipedia.org/wiki/Big_O_notation 
 
      Ω (g) = { f: ℕ → ℝ:    ∃c, N0   s.t.   c g(n) ≤ f (n)  for all n ≥ N0}    
 
   O(g) = { f: ℕ → ℝ:    ∃C, N0   s.t.    f (n)  ≤  C g(n) for all n ≥ N0}    
 
   θ(g) = { f: ℕ → ℝ:    ∃c, C, N0   s.t.    cg(n)  ≤ f (n)  ≤  C g(n) for all n ≥ N0}     
  
OK to replace ℕ by some arbitrary infinite subset of ℝ+. 
 
People often use “is”  or “=” for “is a member of” or “is an anonymous 
element of”.  I myself don’t like this. 
 
Examples:… 
    
 
Reasons for asymptotic notation:  

1. simplicity  – makes arithmetic simple, makes analyses easier 
2. When applied to running times: Routinely good enough, in 

practice, to get a feel for efficiency and to compare candidate 
solutions. 

3. When applied to running times: Facilitates greater model-
independence  
 

Reasons against: 
1. Hidden constants can matter 
2. Might make you fail to care about things that one should think 

about  
3. Not everything has an “n” value to grow 

 
If   f ∈O(n2),   g ∈ O(n2) the   f+g ∈ O(n2)         

http://en.wikipedia.org/wiki/Big_O_notation
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If  f ∈O(n2) and g ∈ O(n3)  then  f+g ∈ O(n3)  
If f ∈O(n log n) and g ∈O(n)   then fg ∈ O(n2 log n)   
  etc.        
May write O(f) + O(g),    and other arithmetic operators 
 
True/False: 
 
 If f ∈Θ(n2) then f ∈ O(n2) TRUE 
etc… 
 
 
n         n lg n      n2         n3          2n 
---------------------------------------------------------- 
10         30 ns    100 ns        1 μs       1 μs 
100       700 ns     10 μs        1 ms      1013 years 
1000       10 μs      1 ms        1 sec     10284 years 
10000     100 μs    0.1 sec      17 mins    103000 years 
105         2 ms     10 sec       1 day      --- 
106        20 ms     17 mins     32 years    --- 
109        30 s      31 years  1010 years     --- 
 

Suppose 1 step = 1 ns  (10-9 sec) 
(about 5 cycles on latest Intel processors; 
a generation-12 Core i9 runs at  5.2 GHz) 

 
 
 
5n3 + 100n2 +100 ∈ O(n3) 
 If f ∈Θ(n2) then f ∈ O(n2)   TRUE 
 n! ∈O(2n)   NO 
 n! ∈ O(nn)   YES 

 (Truth:  n! = Θ((n/e)n  sqrt(n)) --- indeed     (Stirling’s 
formula) 
 
 Claim:   Hn = 1/1 + 1/2 + ... + 1/n =  O(lg n) 
  
 Upper bound by 1 + integral_1^n (1/x)dx = 1 + ln(n) = O(lg n)  
 
List common growth rates 
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             θ (n!) 
             θ (2n) 
             θ (n3) 
             θ (n2) 
             θ (n log n log log n)  
             θ (n lg n) 
             θ (n) 
             θ (sqrt(n) 
             θ (log n) 
             θ (1) 
 
Exercise: where is \sqrt(n) 
 
The highest degree term in a polynomial is the term that determines the 
asymptotic growth rate of that polynomial.  
 
General rule: characterize functions in simplest and tightest terms 
that you can. 
 
In general we should use the big-Oh notation to characterize a 
function as closely as possible. For example, while it is true that f(n) = 
4n3 + 3n2 is O(n5) or  O(n4), it is “better” to say that f(n) is O(n3). 
It is likewise inappropriate to include constant factors and lower order 
terms in the big-Oh notation. For example, it is poor usage to say that 
the function 2n3 is O(4n3 + 8n log n), although it is technically correct. 
The “4” has no place in the expression, and the 8n log n term doesn’t 
below there, either. 
 
“Rules” of using big-Oh: 
 

• If f(n) is a polynomial of degree d, then f(n) is O(nd). We can 
drop the lower order terms and constant factors. 

• Use the smallest/closest possible class of functions, for 
example, “2n is O(n)” instead of “2n is O(n2)” 

• Use the simplest expression of the class, for example, “3n + 5 
is O(n)” instead of “3n+5 is O(3n)” 

 
Example usages and recurrence relations 
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Intertwine examples with the analysis of the resulting recurrence relation 
 

1. How long will the following fragment of code take [nested loops, 
second loop a nontrivial function of the first]  -- something O(n2)  

2. How long will a computer program take, in the worst case, to run 
binary search, in the worst case?     T(n) = T(n/2) + 1    -- 
reminder: have seen recurrence relations before, as with the 
Towers of Hanoi problem.    – Then do another recurrence, say 
T(n) = 3T(n/2) + 1.  Solution (repeated substitution)     n log_2 3     = 
n1.5849…      What about T(n) = 3T(n/2) + n   ?  Or T(n) = 3T(n/2) + 
n2 ?  [recursion tree] 

3. How many gates do you need to multiply two n-bit numbers 
using grade-school multiplication?   

4. How many comparisons to “selection sort” a list of n elements?    
T(n) = 1 + T(n-1) 

5. How many comparisons to “merge sort” a list of n elements?  
T(n) = T(n/2) + n 

6. What’s the running time of deciding SAT using the obvious 
algorithm?   Careful. 

 
Warning:  don’t think that asymptotic notation is only for talking about 
the running time or work of algorithms; it is a convenient way of dealing 
with functions in lots of domains 
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Table modified from Wikipedia  
 

Notation Intuition Formal Definition 

 

 is bounded above 
by  (up to constant 
factor)  

 

 

 is bounded below 
by   

 

 is bounded above 
and below by   
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n         n lg n      n2         n3          2n 
---------------------------------------------------------- 
10         30 ns    100 ns        1 μs       1 μs 
100       700 ns     10 μs        1 ms      1013 years 
1000       10 μs      1 ms        1 sec     10284 years 
10000     100 μs    0.1 sec      17 mins    103000 years 
105         2 ms     10 sec       1 day      --- 
106        20 ms     17 mins     32 years    --- 
109        30 s      31 years  1010 years     --- 
 

Suppose 1 step = 1 ns  (10-9 sec) 
(about 5 cycles on latest Intel processors; 
a generation-12 Core i9 runs at  5.2 GHz) 

 
 


