ECS 20 – Fall 2021 – P. Rogaway Asymptotic Growth Rates

Comparing growth-rates of functions – Asymptotic notation and view

Motivate the notation. Will do big-*O* and Theta. <u>http://en.wikipedia.org/wiki/Big O notation</u>

$$\Omega(g) = \{ f: \mathbb{N} \to \mathbb{R}: \exists c, N_0 \text{ s.t. } c g(n) \le f(n) \text{ for all } n \ge N_0 \}$$

 $O(g) = \{ f: \mathbb{N} \to \mathbb{R}: \exists C, N_0 \text{ s.t. } f(n) \leq C g(n) \text{ for all } n \geq N_0 \}$

 $\theta(g) = \{ f: \mathbb{N} \to \mathbb{R}: \exists c, C, N_0 \text{ s.t. } cg(n) \leq f(n) \leq Cg(n) \text{ for all } n \geq N_0 \}$

OK to replace \mathbb{N} by some arbitrary infinite subset of \mathbb{R}^+ .

People often use "**is**" or "=" for "is a member of" or "is an anonymous element of". I myself don't like this.

Examples:...

Reasons for asymptotic notation:

- 1. simplicity makes arithmetic simple, makes analyses **easier**
- 2. When applied to running times: Routinely **good enough**, in practice, to get a feel for efficiency and to compare candidate solutions.
- 3. When applied to running times: Facilitates greater **modelindependence**

Reasons against:

- 1. Hidden constants **can** matter
- 2. Might make you fail to care about things that one **should** think about
- 3. Not everything has an "*n*" value to grow
- If $f \in O(n^2)$, $g \in O(n^2)$ the $f+g \in O(n^2)$

If $f \in O(n^2)$ and $g \in O(n^3)$ then $f+g \in O(n^3)$ If $f \in O(n \log n)$ and $g \in O(n)$ then $fg \in O(n^2 \log n)$ etc. May write O(f) + O(g), and other arithmetic operators

True/False:

If $f \in \Theta(n^2)$ then $f \in O(n^2)$ TRUE etc...

п	n lg n	n^2	<i>n</i> ³	2 ^{<i>n</i>}
10 100 1000 10000 10 ⁵ 10 ⁶ 10 ⁹	30 ns 700 ns 10 μs 100 μs 2 ms 20 ms 30 s	100 ns 10 µs 1 ms 0.1 sec 10 sec 17 mins 31 years	1 μs 1 ms 1 sec 17 mins 1 day 32 years 10 ¹⁰ years	1 μs 10 ¹³ years 10 ²⁸⁴ years 10 ³⁰⁰⁰ years

Suppose 1 step = 1 ns (10^{-9} sec) (about 5 cycles on latest Intel processors; a generation-12 Core i9 runs at 5.2 GHz)

 $5n^3 + 100n^2 + 100 \in O(n^3)$ If $f \in \Theta(n^2)$ then $f \in O(n^2)$ TRUE $n! \in O(2^n)$ NO $n! \in O(n^n)$ YES (Truth: $n! = \Theta((n/e)^n \operatorname{sqrt}(n)) --- \operatorname{indeed} n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$. (Stirling's

Claim: $H_n = 1/1 + 1/2 + ... + 1/n = O(\lg n)$

Upper bound by 1 + integral_ $1^n (1/x) dx = 1 + \ln(n) = O(\lg n)$

List common growth rates

formula)

 $\theta (n!)$ $\theta (2^n)$ $\theta (n^3)$ $\theta (n^2)$ $\theta (n \log n \log \log n)$ $\theta (n \log n)$ $\theta (n)$ $\theta (sqrt(n))$ $\theta (log n)$ $\theta (1)$

Exercise: where is \sqrt(n)

The highest degree term in a polynomial is the term that determines the asymptotic growth rate of that polynomial.

General rule: characterize functions in simplest and tightest terms that you can.

In general we should use the big-Oh notation to characterize a function as closely as possible. For example, while it is true that $f(n) = 4n^3 + 3n^2$ is $O(n^5)$ or $O(n^4)$, it is "better" to say that f(n) is $O(n^3)$. It is likewise inappropriate to include constant factors and lower order terms in the big-Oh notation. For example, it is poor usage to say that the function $2n^3$ is $O(4n^3 + 8n \log n)$, although it is technically correct. The "4" has no place in the expression, and the $8n \log n$ term doesn't below there, either.

"Rules" of using big-Oh:

- If *f*(*n*) is a polynomial of degree *d*, then *f*(*n*) is O(*n*^{*d*}). We can drop the lower order terms and constant factors.
- Use the smallest/closest possible class of functions, for example, "2*n* is O(*n*)" instead of "2*n* is O(*n*²)"
- Use the simplest expression of the class, for example, "3*n* + 5 is O(*n*)" instead of "3*n*+5 is O(3*n*)"

Example usages and recurrence relations

Intertwine examples with the analysis of the resulting recurrence relation

- 1. How long will the following **fragment of code** take [nested loops, second loop a nontrivial function of the first] -- something $O(n^2)$
- 2. How long will a computer program take, in the worst case, to run **binary search**, in the worst case? T(n) = T(n/2) + 1 -- reminder: have seen recurrence relations before, as with the **Towers of Hanoi** problem. Then do another recurrence, say T(n) = 3T(n/2) + 1. Solution (repeated substitution) $n^{\log_2 3} = n^{1.5849...}$ What about T(n) = 3T(n/2) + n? Or $T(n) = 3T(n/2) + n^2$? [recursion tree]
- 3. How many gates do you need to **multiply** two n-bit numbers using **grade-school** multiplication?
- 4. How many comparisons to "selection sort" a list of n elements? T(n) = 1 + T(n-1)
- 5. How many comparisons to "**merge sort**" a list of n elements? T(n) = T(n/2) + n
- 6. What's the running time of deciding SAT using the obvious algorithm? Careful.

Warning: don't think that asymptotic notation is only for talking about the running time or work of algorithms; it is a convenient way of dealing with functions in lots of domains

Table modified from Wikipedia

Notation	Intuition	Formal Definition
$f(n) \in O(g(n))$	f is bounded above by g (up to constant factor)	$\exists k > 0 \; \exists n_0 \; \forall n > n_0 \; f(n) \le g(n) \cdot k$
$f(n)\in \Omega(g(n)$	f is bounded below by g	$\exists k > 0 \ \exists n_0 \ \forall n > n_0 \ g(n) \cdot k \le f(n)$
$f(n)\in \Theta(g(n)$	f is bounded above and below by g	$\exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ \forall n > n_0 \\ g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$

Notation	Name	Example		
O(1) constant		Determining if a binary number is even or odd; Calculating $(-1)^n$; Using a constant-size lookup table		
$O(\log \log n)$	double logarithmic	Number of comparisons spent finding an item using interpolation search in a sorted array of uniformly distributed values		
$O(\log n)$	logarithmic	Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap		
$O((\log n)^c) \ c>1$	polylogarithmic	Matrix chain ordering can be solved in polylogarithmic time on a parallel random- access machine.		
$O(n^c)$ 0 < c < 1	fractional power	Searching in a k-d tree		
J(n) linear		Finding an item in an unsorted list or in an unsorted array; adding two <i>n</i> -bit integers by ripple carry		
$O(n\log^* n)$	n log-star n	Performing triangulation of a simple polygon using Seidel's algorithm, or the union-find algorithm. Note that $\log^*(n) = \begin{cases} 0, & \text{if } n \leq 1\\ 1 + \log^*(\log n), & \text{if } n > 1 \end{cases}$		
$O(n\log n) = O(\log n!)$	linearithmic, loglinear, quasilinear, or "n log n"	Performing a fast Fourier transform; Fastest possible comparison sort; heapsort and merge sort		
$O(n^2)$	quadratic	Multiplying two <i>n</i> -digit numbers by a simple algorithm; simple sorting algorithms, such as bubble sort, selection sort and insertion sort; (worst case) bound on some usually faster sorting algorithms such as quicksort, Shellsort, and tree sort		
$O(n^c)$	polynomial or algebraic	Tree-adjoining grammar parsing; maximum matching for bipartite graphs; finding the determinant with LU decomposition		
$ \begin{array}{l} L_n[\alpha,c] = e^{(c+o(1))(\ln n)^{\pmb{\alpha}}(\ln\ln n)^{1-\pmb{\alpha}}} & \text{L-notation or sub-} \\ 0 < \alpha < 1 & \text{exponential} \end{array} $		Factoring a number using the quadratic sieve or number field sieve		
$O(c^n)$ c > 1	exponential	Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search		
<i>O</i> (<i>n</i> !)	factorial	Solving the travelling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with Laplace expansion enumerating all partitions of a set		

п	n lg n	n^2	<i>n</i> ³	2 ⁿ
10 100 1000 10000 10 ⁵ 10 ⁶	30 ns 700 ns 10 μs 100 μs 2 ms 20 ms	100 ns 10 µs 1 ms 0.1 sec 10 sec 17 mins	1 μs 1 ms 1 sec 17 mins 1 day 32 years	1 μs 10 ¹³ years 10 ²⁸⁴ years 10 ³⁰⁰⁰ years
10 ⁹	30 s	31 years	10 ¹⁰ years	

Suppose 1 step = 1 ns (10^{-9} sec)

(about 5 cycles on latest Intel processors; a generation-12 Core i9 runs at 5.2 GHz)