ECS 20 - Fall 2021 — P. Rogaway  Asymptotic Growth Rates

Comparing growth-rates of functions - Asymptotic notation and
view

Motivate the notation. Will do big-O and Theta.
http://en.wikipedia.org/wiki/Big O notation

Q(g)={fN—->R: 3c,No st. cg(n)<f(n) forall n= No}
O(g)={fN—>R: 3C, Nost. f(n) < Cg(n)forallnz= No}
0(g)={fAN—->R: 3FgC Nost. cg(n) <f(n) < Cg(n) forall n > No}

OK to replace N by some arbitrary infinite subset of R*.
People often use “is” or “=" for “is a member of” or “is an anonymous
element of”. I myself don’t like this.

Examples:...

Reasons for asymptotic notation:
1. simplicity - makes arithmetic simple, makes analyses easier
2. When applied to running times: Routinely good enough, in
practice, to get a feel for efficiency and to compare candidate
solutions.
3. When applied to running times: Facilitates greater model-
independence

Reasons against:
1. Hidden constants can matter
2. Might make you fail to care about things that one should think
about
3. Not everything has an “n” value to grow

If feO(n?), g€ 0(n?)the f+ge 0(n?)


http://en.wikipedia.org/wiki/Big_O_notation

If f€0(n?)andg € O(n3) then f+g € 0(n3)
If f€O(nlogn)and g €0(n) then fg € O(n?logn)
etc.
May write O(f) + O(g), and other arithmetic operators

True/False:

If f€O(n?) then f € O(n%) TRUE

etc...

n n Ig n n2 n3 2"

10 30 ns 100 ns 1 us 1 us

100 700 ns 10 us 1 ms 1013 years

1000 10 us 1 ms 1 sec 10284 years
10000 100 us 0.1 sec 17 mins 103000 years
105 2 ms 10 sec 1 day -

106 20 ms 17 mins 32 years -——=

10° 30 s 31 years 1010 years -—

Suppose 1 step =1 ns (10 sec)
(about 5 cycles on latest Intel processors;
a generation-12 Core i9 runs at 5.2 GHz)

5n3 +100n% +100 € O(n3)

If f€O(n?) then f€ O(n%2) TRUE

n! €0(2") NO

n! € O(n") YES .
nl ~ (E) Vv 2mn.

(Truth: n!'=0((n/e)" sqrt(n)) --- indeed €

formula)

(Stirling’s

Claim: H,=1/1+1/2+..+1/n= 0(lgn)
Upper bound by 1 + integral_1”n (1/x)dx =1 + In(n) = O(lg n)

List common growth rates



6 (n!)

0 (27)

0 (n3)

0 (n?)

0 (nlog nloglogn)
6 (nlgn)

0 (n)

0 (sqrt(n)

0 (log n)

0 (1)

Exercise: where is \sqrt(n)

The highest degree term in a polynomial is the term that determines the
asymptotic growth rate of that polynomial.

General rule: characterize functions in simplest and tightest terms
that you can.

In general we should use the big-Oh notation to characterize a
function as closely as possible. For example, while it is true that f{(n) =
4n3 + 3n?is 0(n>) or O(n*), itis “better” to say that f(n) is O(n3).

It is likewise inappropriate to include constant factors and lower order
terms in the big-Oh notation. For example, it is poor usage to say that
the function 2n3 is O(4n3 + 8n log n), although it is technically correct.
The “4” has no place in the expression, and the 8n log n term doesn’t
below there, either.

“Rules” of using big-Oh:

« Iff(n) is a polynomial of degree d, then f{(n) is O(n9). We can
drop the lower order terms and constant factors.

« Use the smallest/closest possible class of functions, for
example, “2n is O(n)” instead of “2n is O(n?)”

« Use the simplest expression of the class, for example, “3n + 5
is O(n)” instead of “3n+5 is 0(3n)”

Example usages and recurrence relations



Intertwine examples with the analysis of the resulting recurrence relation

1.

2.

How long will the following fragment of code take [nested loops,
second loop a nontrivial function of the first] -- something O(n2)
How long will a computer program take, in the worst case, to run
binary search, in the worst case? T(n)=T(n/2)+1 --
reminder: have seen recurrence relations before, as with the
Towers of Hanoi problem. - Then do another recurrence, say
T(n) =3T(n/2) + 1. Solution (repeated substitution) nlg23 =
n1s5849.. What about T(n) =3T(n/2) +n ? Or T(n) =3T(n/2) +
n2? [recursion tree]

How many gates do you need to multiply two n-bit numbers
using grade-school multiplication?

How many comparisons to “selection sort” a list of n elements?
T(n) =1+ T(n-1)

How many comparisons to “merge sort” a list of n elements?
T(n) =T(n/2) +n

What's the running time of deciding SAT using the obvious
algorithm? Careful.

Warning: don’t think that asymptotic notation is only for talking about
the running time or work of algorithmes; it is a convenient way of dealing
with functions in lots of domains



Table modified from Wikipedia

Notation Intuition Formal Definition

[ is bounded above
f(n) € O(g(n)by 9 (up to constant Ik > 0 Ing ¥n > ng f(n) < g(n)- 4
factor)

f(n) € g(n) i;sgbounded below '35 > 0 3ng Vi > no g(n) -k < f(n

[ is bounded above Fki > 0 Jky > 0 Ing Vn > ng
f(n) € 6(g(n) and below by ¢ g(n) -k < f(n) < g(n) - ks



Notation Name Example
Determining if a binary number is even or odd; Calculating (—1)“; Using a constant-
0o(1) constant )
size lookup table
Number of comparisons spent finding an item using interpelation search in a sorted
O(loglogn) double logarithmic A e D=
array of uniformly distributed values
o Finding an item in a sorted array with a binary search or a balanced search tree as
O(logn) logarithmic o o
well as all operations in a Binomial heap
O((logn)®) o Matrix chain ordering can be solved in polylogarithmic time on a parallel random-
polylogarithmic i
c>1 access machine.
O(nc) fractional power Searching in a k-d tree
D<ec<1 P 9
. Finding an item in an unsorted list or in an unsorted array; adding two n-bit integers
O(n) linear i
by ripple carry
Performing triangulation of a simple polygon using Seidel's algorithm, or the union—
O(nlog* n) n log-star n 0 ifn<1l
find algorithm. Note that log* (n) = ! e
< g'(n) 1+log*(logn), ifrn>1
linearithmic,

O(nlogn) = O(logn!)

loglinear, quasilinear,

Performing a fast Fourier transform; Fastest possible comparison sort; heapsort and
merge sort

or"nlogn"
Multiplying two n-digit numbers by a simple algorithm; simple sorting algorithms, such
O[‘nz) quadratic as bubble sort, selection sort and insertion sort; (worst case) bound on some usually
faster sorting algorithms such as quicksort, Shellsort, and tree sort
O( c} polynomial or Tree-adjoining grammar parsing; maximum matching for bipartite graphs; finding the
T

algebraic

determinant with LU decomposition

Ly e, ¢] = eletehin R

L-notation or sub-

Factoring a number using the quadratic sieve or number field sieve

Dca<l exponential
O( n) Finding the (exact) solution to the travelling salesman problem using dynamic
-1 exponential pregramming; determining if two logical statements are equivalent using brute-force
[
search
Solving the travelling salesman problem via brute-force search; generating all
O[n!) factorial unrestricted permutations of a poset; finding the determinant with Laplace expansion;

enumerating all partitions of a set




10 30 ns 100 ns 1 us 1 us

100 700 ns 10 wus 1 ms 1013 years

1000 10 wus 1 ms 1 sec 10284 years
10000 100 us 0.1 sec 17 mins 103000 years
105 2 ms 10 sec 1 day -

106 20 ms 17 mins 32 years -——

1090 30 s 31 years 1010 years -—

Suppose 1 step =1 ns (10 sec)
(about 5 cycles on latest Intel processors;
a generation-12 Core i9 runs at 5.2 GHz)



