
1

ECS 20 – Fall 2021 – P. Rogaway Asymptotic Growth Rates

Comparing growth-rates of functions – Asymptotic notation and
view

Motivate the notation. Will do big-O and Theta.
http://en.wikipedia.org/wiki/Big_O_notation

 Ω (g) = { f: ℕ → ℝ: ∃c, N0 s.t. c g(n) ≤ f (n) for all n ≥ N0}

 O(g) = { f: ℕ → ℝ: ∃C, N0 s.t. f (n) ≤ C g(n) for all n ≥ N0}

 θ(g) = { f: ℕ → ℝ: ∃c, C, N0 s.t. cg(n) ≤ f (n) ≤ C g(n) for all n ≥ N0}

OK to replace ℕ by some arbitrary infinite subset of ℝ+.

People often use “is” or “=” for “is a member of” or “is an anonymous
element of”. I myself don’t like this.

Examples:…

Reasons for asymptotic notation:

1. simplicity – makes arithmetic simple, makes analyses easier
2. When applied to running times: Routinely good enough, in

practice, to get a feel for efficiency and to compare candidate
solutions.

3. When applied to running times: Facilitates greater model-
independence

Reasons against:
1. Hidden constants can matter
2. Might make you fail to care about things that one should think

about
3. Not everything has an “n” value to grow

If f ∈O(n2), g ∈ O(n2) the f+g ∈ O(n2)

http://en.wikipedia.org/wiki/Big_O_notation

2

If f ∈O(n2) and g ∈ O(n3) then f+g ∈ O(n3)
If f ∈O(n log n) and g ∈O(n) then fg ∈ O(n2 log n)
 etc.
May write O(f) + O(g), and other arithmetic operators

True/False:

 If f ∈Θ(n2) then f ∈ O(n2) TRUE
etc…

n n lg n n2 n3 2n
--
10 30 ns 100 ns 1 μs 1 μs
100 700 ns 10 μs 1 ms 1013 years
1000 10 μs 1 ms 1 sec 10284 years
10000 100 μs 0.1 sec 17 mins 103000 years
105 2 ms 10 sec 1 day ---
106 20 ms 17 mins 32 years ---
109 30 s 31 years 1010 years ---

Suppose 1 step = 1 ns (10-9 sec)
(about 5 cycles on latest Intel processors;
a generation-12 Core i9 runs at 5.2 GHz)

5n3 + 100n2 +100 ∈ O(n3)
 If f ∈Θ(n2) then f ∈ O(n2) TRUE
 n! ∈O(2n) NO
 n! ∈ O(nn) YES

 (Truth: n! = Θ((n/e)n sqrt(n)) --- indeed (Stirling’s
formula)

 Claim: Hn = 1/1 + 1/2 + ... + 1/n = O(lg n)

 Upper bound by 1 + integral_1^n (1/x)dx = 1 + ln(n) = O(lg n)

List common growth rates

3

 θ (n!)
 θ (2n)
 θ (n3)
 θ (n2)
 θ (n log n log log n)
 θ (n lg n)
 θ (n)
 θ (sqrt(n)
 θ (log n)
 θ (1)

Exercise: where is \sqrt(n)

The highest degree term in a polynomial is the term that determines the
asymptotic growth rate of that polynomial.

General rule: characterize functions in simplest and tightest terms
that you can.

In general we should use the big-Oh notation to characterize a
function as closely as possible. For example, while it is true that f(n) =
4n3 + 3n2 is O(n5) or O(n4), it is “better” to say that f(n) is O(n3).
It is likewise inappropriate to include constant factors and lower order
terms in the big-Oh notation. For example, it is poor usage to say that
the function 2n3 is O(4n3 + 8n log n), although it is technically correct.
The “4” has no place in the expression, and the 8n log n term doesn’t
below there, either.

“Rules” of using big-Oh:

• If f(n) is a polynomial of degree d, then f(n) is O(nd). We can
drop the lower order terms and constant factors.

• Use the smallest/closest possible class of functions, for
example, “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class, for example, “3n + 5
is O(n)” instead of “3n+5 is O(3n)”

Example usages and recurrence relations

4

Intertwine examples with the analysis of the resulting recurrence relation

1. How long will the following fragment of code take [nested loops,
second loop a nontrivial function of the first] -- something O(n2)

2. How long will a computer program take, in the worst case, to run
binary search, in the worst case? T(n) = T(n/2) + 1 --
reminder: have seen recurrence relations before, as with the
Towers of Hanoi problem. – Then do another recurrence, say
T(n) = 3T(n/2) + 1. Solution (repeated substitution) n log_2 3 =
n1.5849… What about T(n) = 3T(n/2) + n ? Or T(n) = 3T(n/2) +
n2 ? [recursion tree]

3. How many gates do you need to multiply two n-bit numbers
using grade-school multiplication?

4. How many comparisons to “selection sort” a list of n elements?
T(n) = 1 + T(n-1)

5. How many comparisons to “merge sort” a list of n elements?
T(n) = T(n/2) + n

6. What’s the running time of deciding SAT using the obvious
algorithm? Careful.

Warning: don’t think that asymptotic notation is only for talking about
the running time or work of algorithms; it is a convenient way of dealing
with functions in lots of domains

5

Table modified from Wikipedia

Notation Intuition Formal Definition

 is bounded above
by (up to constant
factor)

 is bounded below
by

 is bounded above
and below by

6

7

n n lg n n2 n3 2n
--
10 30 ns 100 ns 1 μs 1 μs
100 700 ns 10 μs 1 ms 1013 years
1000 10 μs 1 ms 1 sec 10284 years
10000 100 μs 0.1 sec 17 mins 103000 years
105 2 ms 10 sec 1 day ---
106 20 ms 17 mins 32 years ---
109 30 s 31 years 1010 years ---

Suppose 1 step = 1 ns (10-9 sec)
(about 5 cycles on latest Intel processors;
a generation-12 Core i9 runs at 5.2 GHz)

